A NEW ROUTE TO 2-ALKYL - AND 2-ARYL -3-METHOXY -1,3- DIENES AND α -ALKYLIDENE-KETONES . APPLICATION OF ORGANOCOPPER(I) REAGENTS IN ALLYLIC 1,3- SUBSTITUTION REACTIONS .

Henk Kleijn , Hans Westmijze and Peter Vermeer .
(Department of Organic Chemistry of the State University ,
Utrecht , The Netherlands).

(Received in UK 3 January 1978; accepted for publication 3 February 1978)

The easy available compound methoxypropadiene (1) has successfully been used in a number of syntheses $^{1-4}$. Some years ago *Hoff et al.* reported on its excellent conversion into the α - lithiated compound 2^{5} , from which the α - allenic alcohols 3 could be obtained in a good yield 6 :

If in <u>3</u> the hydroxyl group is transformed into a smooth leaving group , organometallic compounds R-M could induce a 1,3-substitution reaction leading to 1,3-dienic products of type <u>8</u>. Such 3-alkoxy-1,3-dienes are useful compounds in synthesis. They have for instance been applied to the preparation of *Cecropia* juvenile hormone ⁷ and $(2\underline{R},3^{-}\underline{E},7^{-}\underline{E}) - \alpha$ - Tocotrienol ⁸. Recently we found that allenic hydrocarbons (<u>6</u>) can be obtained in high yields from propargylic methanesulfinic esters (<u>4</u>) and organoheterocuprates (<u>5</u>) in tetrahydofuran (THF)⁹:

In this communication we wish to report that the methanesulfinic ester group is also an excellent leaving group when it is present in the esters $\frac{7}{2}$ derived from 3.

The fact that the conversion of primary, secondary as well as tertiary alcohols into the corresponding methanesulfinic esters can be achieved almost quantitatively (yields > 95 %) , makes this route to $\frac{8}{2}$ to a very attractive one .

Addition of lithium bromide in the preparation of $\frac{5}{2}$ from RMgX and copper(I)bromide shortened the reaction time needed for the complete formation of the cuprate, although its presence did not influence the yield of $\underline{8}$. Homocuprates - R_2 CuMgX - could not be used for transformation of $\underline{7}$ into $\underline{8}$, because these reagents preferentially gave attack on the sulfur atom in $\underline{7}$ with the formation of R-S(O)-Me and $\underline{3}$. This phenomenon was also observed when $\underline{4}$ was reacted with homocuprates 9.

H ₂ C=C (R R) -C (OCH ₃) =C R'	CR ~ R ~ (<u>8</u>) R *	<u>E/Z</u> -ratio ¹²	Boiling p. (^O C/mm Hg)	n ²⁰ n _D	yield (%)
Bu <u>t</u> -Bu <u>t</u> -Bu Ph Me i-Pr Et	н н н н н н	H H Me Ph Ph Me	- 45 / 55 75 / 25 90 / 10 > 95 / 5	65-66/20 42-43/20 56-57/20 116-118/20 58-62 / 0.1 66-68 / 0.1 44-45 /20	1.4523 1.4380 1.4420 1.5414 1.5583 1.5416 1.4431	70 80 75 95 90 90 80
Ph	Ме	Ме	-	118-120/20	1.5396	95

<u>Table 1</u> . Physical constants and yields of <u>8</u> 10 obtained from <u>7</u> and <u>5</u> 11 .

The 1,3-dienes <u>8</u>, which possess an enol ether unit, can easily be hydrolysed into the corresponding α -alkyl- or α -aryl- α , β -unsaturated ketones <u>9</u> by treatment with a catalytic amount of acid in a mixture of water and dimethylsulfoxide (DMSO) :

$$\underbrace{\underline{B}}_{H_2O-DMSO} \xrightarrow{H^+}_{H_2C=C-C=O} \underbrace{\underline{H}}_{2C=C-C=O} \underbrace{\underline{H}}_{2C=C=C=O} \underbrace{\underline{H}}_{2C=C=C=O} \underbrace{\underline{H}}_{2C=C=O} \underbrace{\underline{H}}_{2C=C=C=O} \underbrace{\underline{H}}_{2C=C=O} \underbrace{\underline{H}}_{2C=C=C=O} \underbrace{\underline{H}}_{2C=C$$

Under these conditions migration of the other double bond did not take place. In our opinion this convenient route to 9 starting from 1 will be a method of choice for the preparation of α -alkylidene ketones (see for other methods reference 13).

H ₂ C=C (R R) -CO-CHR R1	רד" (<u>9</u>) ד"	Boiling p. (^O C/mm Hg)	n20 np	yield (%)
Bu	н	Н	53-54 /18	1.4380	70
<u>t</u> -Bu	н	н	61-62 /48	1.4333	80
<u>t</u> -Bu	н	Me	75-76 /28	1.4358	70
Ph	н	Me	116-118/20	1.5386	70. ¹⁴
Ме	н	Ph	54-56 / 0.1	1.5366	80 ¹⁴
i-Pr	н	Ph	56-59 /0.08	1.5124	90 ¹⁴
Et	Me	Me	69-70 /48	1.4328	75
Ph	Me	Me	55-57 / 0.1	1.5294	95

Table 2. Physical constants and yields of 9 obtained fro	m 8	3	•	,
--	-----	---	---	---

Procedure

<u>Preparation of 6</u>: To a stirred solution of CuBr (0.030 mole) and LiBr (0.030 mole) in THF (60 ml) was added RMgX (0.030 mole) in THF (\Rightarrow 30 ml) at - 50° (R \neq Me or Ph) or at - 10° (R = Me or Ph). After stirring the reaction mixture at - 50° and -10° respectively (15 min), a solution of <u>4</u> (0.025 mole)¹⁵ in THF (5 ml) was cautiously added at -50° (R \neq Me or Ph) or at - 10° (R = Me or Ph). Subsequently the temperature of the reaction mixture was raised to 20° within 15 minutes and stirring was continued at this temperature (30 min). After pouring the reaction mixture into a saturated aqueous solution of NH₄Cl(200 ml) containing some NaCN(2g), 6 was isolated by extracting with pentane (3 x 50 ml). <u>Preparation of 7</u>: The 1,3-diene <u>6</u> (0.030 mole) was added to a stirred solution of 36 N H_2SO_4 (2 ml) in DMSO (60 ml) and H_2O (12 ml). The reaction mixture was stirred during 60 minutes at 50-70°. After adding H_2O (200 ml) and cooling to 20° the ketones <u>7</u> were isolated by extraction with ether-pentane (1:1 (v/v); 3 x 50 ml).

References and notes.

- 1. S.Hoff,L.Brandsma and J.F.Arens, Recl.Trav.Chim.Pays-Bas , 88 , 609 (1969).
- 2. J.Meijer and P.Vermeer , ibid. , 93 , 183 (1974) .
- 3. H.Kleijn , H.Eysenga, H.Westmijze, J.Meijer and P.Vermeer, Tetrahedron.Lett. 1976, 947.
- 4. P.H.M.Schreurs, P.Vermeer, J.Meijer and L.Brandsma, ibid. 1976, 2387.
- 5. S.Hoff,L.Brandsma and J.F.Arens , Recl.Trav.Chim.Pays-Bas,87 , 916 (1968).
- 6. S.Hoff, L.Brandsma and J.F.Arens , ibid. 87 ,1179 (1968).
- 7. D.J.Faulkner and M.R.Peterson , J.Amer.Chem.Soc., <u>95</u> , 553 (1973).
- 8. J.W.Scott,F.T.Bizzarro,D.R.Parrish and G.Saucy, Helv.Chim.Acta , <u>59</u> (1),290 (1976).
- 9. P.Vermeer, H.Westmijze, H.Kleijn and L.A.van Dijck , Recl.Trav.Chim.Pays-Bas, in press.
- 10. The purity of $\underline{8}$ and $\underline{9}$ was at least 98 %(based on ¹H-NMR and GLC).
- 11. The heterocuprates 5 were prepared from CuBr.LiBr and RMgCl (R =Me,i-Pr,Bu or t-Bu) or from CuBr.LiBr and RMgBr (R = Et , Ph)
- 12. The <u>E</u> and <u>Z</u> configurations were determined from the chemical shifts of the vinylic protons, using the additive increments for the substituents according to : U.E.Matter,C.Pascual,E.Pretsch,A.Pross,W.Simon and S.Sternhall,Tetrahedron ,<u>25</u>,691 (1969)
- See for instance : F.Huet, M.Pellet and J.M.Conia, Tetrahedron Lett. <u>1977</u>, 3505 and other references cited therein.
- 14. The crude product was contaminated with an unknown impurity (7-9 %), which was removed by chromatography (Al_2O_3 / pentane) prior to destillation .
- 15. The sulfinic esters $\underline{4}$ were prepared from $\underline{3}$ according to the method described in reference 9 and were used without purification .